• Home
  • Dashboard
  • Models
  • Wiro AppsApps
  • Pricing
  • Blog
  • Sign In
  • Sign Up
HomeDashboardModelsWiro AppsAppsPricing
Blog
Documentation
Sign In
Sign Up

Task History

  • Runnings
  • Models
  • Trains
Select project...
The list is empty
No results

You don't have task yet.

Go to Models
  • Models
  • Qwen/Qwen1.5-0.5B-Chat
Models
Task History

Qwen /
Qwen1.5-0.5B-Chat
Copy Prompt for LLM

View as Markdown
View as Markdown (Full)

Qwen1.5-0.5B-Chat

Qwen1.5-0.5B-Chat is a lightweight conversational AI model with 500 million parameters, designed for efficient and interactive chat-based applications. Despite ...

208Runs
0Comments
  • Run
  • History
  • API Integration Guide

API Sample: Qwen/Qwen1.5-0.5B-Chat

📚 For LLM Integration:

For complete parameter details and examples, please also review the markdown documentation at:
/models/qwen/qwen1-5-0-5b-chat/llms.txt
/models/qwen/qwen1-5-0-5b-chat/llms-full.txt

You don't have any projects yet. To be able to use our api service effectively, please sign in/up and create a project.

Get your api key
  • curl
  • nodejs
  • csharp
  • php
  • swift
  • dart
  • kotlin
  • go
  • python

Prepare Authentication (Signature)

                            //Sign up Wiro dashboard and create project
export YOUR_API_KEY="YOUR_WIRO_API_KEY";
export YOUR_API_SECRET="XXXXXXXXX";

//unix time or any random integer value
export NONCE=$(date +%s);

//hmac-SHA256 (YOUR_API_SECRET+Nonce) with YOUR_API_KEY
export SIGNATURE="$(echo -n "${YOUR_API_SECRET}${NONCE}" | openssl dgst -sha256 -hmac "${YOUR_API_KEY}")";
    
                        

Create a New Folder - Make HTTP Post Request

Create a New Folder - Response

Upload a File to the Folder - Make HTTP Post Request

Upload a File to the Folder - Response

Run Command - Make HTTP Post Request (JSON)

                          
# ⚠️ IMPORTANT: Remove all commented lines (starting with #) before running
# Bash doesn't support comments in command continuation (lines ending with \)

curl -X POST "https://api.wiro.ai/v1/Run/qwen/qwen1-5-0-5b-chat"  \
-H "Content-Type: application/json" \
-H "x-api-key: ${YOUR_API_KEY}" \
-H "x-nonce: ${NONCE}" \
-H "x-signature: ${SIGNATURE}" \
-d '{
  "prompt": "What are some interesting historical events that took place near the Tower of London, and how could they inspire a fictional story?",
  "user_id": "/* user_id value */",
  "session_id": "/* session_id value */",
  "system_prompt": "You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. \nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.",
  "temperature": "0.7",
  "top_p": "0.95",
  "top_k": "0",
  "repetition_penalty": "1.0",
  "length_penalty": "1",
  "max_tokens": "0",
  "min_tokens": "0",
  "max_new_tokens": "0",
  "min_new_tokens": "-1",
  "stop_sequences": "/* stop_sequences value */",
  "seed": "7257391",
  "quantization": "--quantization",
  "do_sample": "--do_sample",
  "callbackUrl": "Optional: Webhook URL for task completion notifications"
}';

    
                        

Run Command - Response

                          
//response body
{
    "errors": [],
    "taskid": "2221",
    "socketaccesstoken": "eDcCm5yyUfIvMFspTwww49OUfgXkQt",
    "result": true
}
    
                        

Get Task Detail - Make HTTP Post Request with Task Token

                          
curl -X POST "https://api.wiro.ai/v1/Task/Detail"  \
-H "Content-Type: application/json" \
-H "x-api-key: ${YOUR_API_KEY}" \
-H "x-nonce: ${NONCE}" \
-H "x-signature: ${SIGNATURE}" \
-d '{
  "tasktoken": "eDcCm5yyUfIvMFspTwww49OUfgXkQt"
}';

    
                        

Get Task Detail - Response

                          
//response body
{
  "total": "1",
  "errors": [],
  "tasklist": [
      {
          "id": "534574",
          "uuid": "15bce51f-442f-4f44-a71d-13c6374a62bd",
          "name": "",
          "socketaccesstoken": "eDcCm5yyUfIvMFspTwww49OUfgXkQt",
          "parameters": {
              "inputImage": "https://api.wiro.ai/v1/File/mCmUXgZLG1FNjjjwmbtPFr2LVJA112/inputImage-6060136.png"
          },
          "debugoutput": "",
          "debugerror": "",
          "starttime": "1734513809",
          "endtime": "1734513813",
          "elapsedseconds": "6.0000",
          "status": "task_postprocess_end",
          "cps": "0.000585000000",
          "totalcost": "0.003510000000",
          "guestid": null,
          "projectid": "699",
          "modelid": "598",
          "description": "",
          "basemodelid": "0",
          "runtype": "model",
          "modelfolderid": "",
          "modelfileid": "",
          "callbackurl": "",
          "marketplaceid": null,
          "createtime": "1734513807",
          "canceltime": "0",
          "assigntime": "1734513807",
          "accepttime": "1734513807",
          "preprocessstarttime": "1734513807",
          "preprocessendtime": "1734513807",
          "postprocessstarttime": "1734513813",
          "postprocessendtime": "1734513814",
          "pexit": "0",
          "categories": "["tool","image-to-image","quick-showcase","compare-landscape"]",
          "outputs": [
              {
                  "id": "6bc392c93856dfce3a7d1b4261e15af3",
                  "name": "0.png",
                  "contenttype": "image/png",
                  "parentid": "6c1833f39da71e6175bf292b18779baf",
                  "uuid": "15bce51f-442f-4f44-a71d-13c6374a62bd",
                  "size": "202472",
                  "addedtime": "1734513812",
                  "modifiedtime": "1734513812",
                  "accesskey": "dFKlMApaSgMeHKsJyaDeKrefcHahUK",
                  "foldercount": "0",
                  "filecount": "0",
                  "ispublic": 0,
                  "expiretime": null,
                  "url": "https://cdn1.wiro.ai/6a6af820-c5050aee-40bd7b83-a2e186c6-7f61f7da-3894e49c-fc0eeb66-9b500fe2/0.png"
              }
          ],
          "size": "202472"
      }
  ],
  "result": true
}
    
                        

Kill Task - Make HTTP Post Request with Task ID

                          
curl -X POST "https://api.wiro.ai/v1/Task/Kill"  \
-H "Content-Type: application/json" \
-H "x-api-key: ${YOUR_API_KEY}" \
-H "x-nonce: ${NONCE}" \
-H "x-signature: ${SIGNATURE}" \
-d '{
  "taskid": "534574"
}';

    
                        

Kill Task - Response

                          
//response body
{
  "errors": [],
  "tasklist": [
      {
          "id": "534574",
          "uuid": "15bce51f-442f-4f44-a71d-13c6374a62bd",
          "name": "",
          "socketaccesstoken": "ZpYote30on42O4jjHXNiKmrWAZqbRE",
          "parameters": {
              "inputImage": "https://api.wiro.ai/v1/File/mCmUXgZLG1FNjjjwmbtPFr2LVJA112/inputImage-6060136.png"
          },
          "debugoutput": "",
          "debugerror": "",
          "starttime": "1734513809",
          "endtime": "1734513813",
          "elapsedseconds": "6.0000",
          "status": "task_cancel",
          "cps": "0.000585000000",
          "totalcost": "0.003510000000",
          "guestid": null,
          "projectid": "699",
          "modelid": "598",
          "description": "",
          "basemodelid": "0",
          "runtype": "model",
          "modelfolderid": "",
          "modelfileid": "",
          "callbackurl": "",
          "marketplaceid": null,
          "createtime": "1734513807",
          "canceltime": "0",
          "assigntime": "1734513807",
          "accepttime": "1734513807",
          "preprocessstarttime": "1734513807",
          "preprocessendtime": "1734513807",
          "postprocessstarttime": "1734513813",
          "postprocessendtime": "1734513814",
          "pexit": "0",
          "categories": "["tool","image-to-image","quick-showcase","compare-landscape"]",
          "outputs": [
              {
                  "id": "6bc392c93856dfce3a7d1b4261e15af3",
                  "name": "0.png",
                  "contenttype": "image/png",
                  "parentid": "6c1833f39da71e6175bf292b18779baf",
                  "uuid": "15bce51f-442f-4f44-a71d-13c6374a62bd",
                  "size": "202472",
                  "addedtime": "1734513812",
                  "modifiedtime": "1734513812",
                  "accesskey": "dFKlMApaSgMeHKsJyaDeKrefcHahUK",
                  "foldercount": "0",
                  "filecount": "0",
                  "ispublic": 0,
                  "expiretime": null,
                  "url": "https://cdn1.wiro.ai/6a6af820-c5050aee-40bd7b83-a2e186c6-7f61f7da-3894e49c-fc0eeb66-9b500fe2/0.png"
              }
          ],
          "size": "202472"
      }
  ],
  "result": true
}
    
                        

Cancel Task - Make HTTP Post Request (For tasks on queue)

                          
curl -X POST "https://api.wiro.ai/v1/Task/Cancel"  \
-H "Content-Type: application/json" \
-H "x-api-key: ${YOUR_API_KEY}" \
-H "x-nonce: ${NONCE}" \
-H "x-signature: ${SIGNATURE}" \
-d '{
  "taskid": "634574"
}';

    
                        

Cancel Task - Response

                          
//response body
{
  "errors": [],
  "tasklist": [
      {
          "id": "634574",
          "uuid": "15bce51f-442f-4f44-a71d-13c6374a62bd",
          "name": "",
          "socketaccesstoken": "ZpYote30on42O4jjHXNiKmrWAZqbRE",
          "parameters": {
              "inputImage": "https://api.wiro.ai/v1/File/mCmUXgZLG1FNjjjwmbtPFr2LVJA112/inputImage-6060136.png"
          },
          "debugoutput": "",
          "debugerror": "",
          "starttime": "1734513809",
          "endtime": "1734513813",
          "elapsedseconds": "6.0000",
          "status": "task_cancel",
          "cps": "0.000585000000",
          "totalcost": "0.003510000000",
          "guestid": null,
          "projectid": "699",
          "modelid": "598",
          "description": "",
          "basemodelid": "0",
          "runtype": "model",
          "modelfolderid": "",
          "modelfileid": "",
          "callbackurl": "",
          "marketplaceid": null,
          "createtime": "1734513807",
          "canceltime": "0",
          "assigntime": "1734513807",
          "accepttime": "1734513807",
          "preprocessstarttime": "1734513807",
          "preprocessendtime": "1734513807",
          "postprocessstarttime": "1734513813",
          "postprocessendtime": "1734513814",
          "pexit": "0",
          "categories": "["tool","image-to-image","quick-showcase","compare-landscape"]",
          "outputs": [
              {
                  "id": "6bc392c93856dfce3a7d1b4261e15af3",
                  "name": "0.png",
                  "contenttype": "image/png",
                  "parentid": "6c1833f39da71e6175bf292b18779baf",
                  "uuid": "15bce51f-442f-4f44-a71d-13c6374a62bd",
                  "size": "202472",
                  "addedtime": "1734513812",
                  "modifiedtime": "1734513812",
                  "accesskey": "dFKlMApaSgMeHKsJyaDeKrefcHahUK",
                  "foldercount": "0",
                  "filecount": "0",
                  "ispublic": 0,
                  "expiretime": null,
                  "url": "https://cdn1.wiro.ai/6a6af820-c5050aee-40bd7b83-a2e186c6-7f61f7da-3894e49c-fc0eeb66-9b500fe2/0.png"
              }
          ],
          "size": "202472"
      }
  ],
  "result": true
}
    
                        

Get Task Process Information and Results with Socket Connection

                          
<script type="text/javascript">
  window.addEventListener('load',function() {
    //Get socketAccessToken from task run response
    var SocketAccessToken = 'eDcCm5yyUfIvMFspTwww49OUfgXkQt';
    WebSocketConnect(SocketAccessToken);
  });

  //Connect socket with connection id and register task socket token
  async function WebSocketConnect(accessTokenFromAPI) {
    if ("WebSocket" in window) {
        var ws = new WebSocket("wss://socket.wiro.ai/v1");
        ws.onopen = function() {
          //Register task socket token which has been obtained from task run API response
          ws.send('{"type": "task_info", "tasktoken": "' + accessTokenFromAPI + '"}');
        };

        ws.onmessage = function (evt) {
          var msg = evt.data;

          try {
              var debugHtml = document.getElementById('debug');
              debugHtml.innerHTML = debugHtml.innerHTML + "\n" + msg;

              var msgJSON = JSON.parse(msg);
              console.log('msgJSON: ', msgJSON);

              if(msgJSON.type != undefined)
              {
                console.log('msgJSON.target: ',msgJSON.target);
                switch(msgJSON.type) {
                    case 'task_queue':
                      console.log('Your task has been waiting in the queue.');
                    break;
                    case 'task_accept':
                      console.log('Your task has been accepted by the worker.');
                    break;
                    case 'task_preprocess_start':
                      console.log('Your task preprocess has been started.');
                    break;
                    case 'task_preprocess_end':
                      console.log('Your task preprocess has been ended.');
                    break;
                    case 'task_assign':
                      console.log('Your task has been assigned GPU and waiting in the queue.');
                    break;
                    case 'task_start':
                      console.log('Your task has been started.');
                    break;
                    case 'task_output':
                      console.log('Your task has been started and printing output log.');
                      console.log('Log: ', msgJSON.message);
                    break;
                    case 'task_error':
                      console.log('Your task has been started and printing error log.');
                      console.log('Log: ', msgJSON.message);
                    break;
                   case 'task_output_full':
                      console.log('Your task has been completed and printing full output log.');
                    break;
                    case 'task_error_full':
                      console.log('Your task has been completed and printing full error log.');
                    break;
                    case 'task_end':
                      console.log('Your task has been completed.');
                    break;
                    case 'task_postprocess_start':
                      console.log('Your task postprocess has been started.');
                    break;
                    case 'task_postprocess_end':
                      console.log('Your task postprocess has been completed.');
                      console.log('Outputs: ', msgJSON.message);
                      //output files will add ui
                      msgJSON.message.forEach(function(currentValue, index, arr){
                          console.log(currentValue);
                          var filesHtml = document.getElementById('files');
                          filesHtml.innerHTML = filesHtml.innerHTML + '<img src="' + currentValue.url + '" style="height:300px;">'
                      });
                    break;
                }
              }
          } catch (e) {
            console.log('e: ', e);
            console.log('msg: ', msg);
          }
        };

        ws.onclose = function() {
          alert("Connection is closed...");
        };
    } else {
        alert("WebSocket NOT supported by your Browser!");
    }
  }
</script>
    
                        

Prepare UI Elements Inside Body Tag

                          
  <div id="files"></div>
  <pre id="debug"></pre>
    
                        

Prompt to send to the model.

Qwen-Qwen1.5-0.5B-Chat-sample-1.txt
1736807325 Report This Model






Qwen1.5-0.5B-Chat







Introduction


Qwen1.5 is the beta version of Qwen2, a transformer-based decoder-only language model pretrained on a large amount of data. In comparison with the previous released Qwen, the improvements include:



  • 8 model sizes, including 0.5B, 1.8B, 4B, 7B, 14B, 32B and 72B dense models, and an MoE model of 14B with 2.7B activated;

  • Significant performance improvement in human preference for chat models;

  • Multilingual support of both base and chat models;

  • Stable support of 32K context length for models of all sizes

  • No need of trust_remote_code.


For more details, please refer to our blog post and GitHub repo.







Model Details


Qwen1.5 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window attention and full attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes. For the beta version, temporarily we did not include GQA (except for 32B) and the mixture of SWA and full attention.







Training details


We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.







Requirements


The code of Qwen1.5 has been in the latest Hugging face transformers and we advise you to install transformers>=4.37.0, or you might encounter the following error:


KeyError: 'qwen2'






Quickstart


Here provides a code snippet with apply_chat_template to show you how to load the tokenizer and model and how to generate contents.


from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen1.5-0.5B-Chat",
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B-Chat")

prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)

generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

For quantized models, we advise you to use the GPTQ, AWQ, and GGUF correspondents, namely Qwen1.5-0.5B-Chat-GPTQ-Int4, Qwen1.5-0.5B-Chat-GPTQ-Int8, Qwen1.5-0.5B-Chat-AWQ, and Qwen1.5-0.5B-Chat-GGUF.







Tips



  • If you encounter code switching or other bad cases, we advise you to use our provided hyper-parameters in generation_config.json.







Citation


If you find our work helpful, feel free to give us a cite.


@article{qwen,
title={Qwen Technical Report},
author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu},
journal={arXiv preprint arXiv:2309.16609},
year={2023}
}

Models

View All

We couldn't find any matching results.

Social Media & Viral

wiro/Dance Flow

Make anyone dance - turn photos into lively, rhythm-synced dance videos in one seamless flow.
5
Text to Image

meituan-longcat/LongCat-Image-Edit

LongCat-Image-Edit, the image editing version of LongCat-Image.
0
Social Media & Viral

wiro/Instagram Pose

Generate stylish Instagram-style poses with trendy angles, natural expressions, and modern aesthetic.
7
Text to Image

meituan-longcat/LongCat-Image

LongCat-Image is a 6B-parameter model built for high-quality image generation, delivering strong multilingual text rendering, realistic visuals, and efficient deployment.
0
Text to Speech

openbmb/VoxCPM

Tokenizer-Free TTS for Context-Aware Speech Generation and True-to-Life Voice Cloning
0
Fast Inference

Tongyi-MAI/Z-Image-Turbo

Z-Image is a powerful and highly efficient image generation model.
0
Fast Inference

wiro/FLUX.2-dev

FLUX.2 [dev] is a 32 billion parameter rectified flow transformer capable of generating, editing and combining images based on text instructions.
3
Social Media & Viral

wiro/Song Frame

SongFrame places you into a cinematic world, pulls the soundtrack directly from your YouTube link, and fuses everything into a polished video — effortless, emotional, and instantly shareable.
7
Logo of nvidia programLogo of nvidia program
Wiro AI brings machine learning easily accessible to all in the cloud.
  • WIRO
  • About
  • Blog
  • Careers
  • Contact
  • Light Mode
  • Product
  • Models
  • Pricing
  • Status
  • Documentation
  • Introduction
  • Start Your First Project
  • Example Projects

2025 © Wiro.ai | Terms of Service & Privacy Policy