Welcome
CohereForAI/ aya-expanse-8b
API Sample: CohereForAI/aya-expanse-8b
You don't have any projects yet. To be able to use our api service effectively, please sign in/up and create a project.
Get your api keyPrepare Authentication Signature
//Sign up Wiro dashboard and create project
export YOUR_API_KEY="{{useSelectedProjectAPIKey}}";
export YOUR_API_SECRET="XXXXXXXXX";
//unix time or any random integer value
export NONCE=$(date +%s);
//hmac-SHA256 (YOUR_API_SECRET+Nonce) with YOUR_API_KEY
export SIGNATURE="$(echo -n "${YOUR_API_SECRET}${NONCE}" | openssl dgst -sha256 -hmac "${YOUR_API_KEY}")";
Create a New Folder - Make HTTP Post Request
Create a New Folder - Response
Upload a File to the Folder - Make HTTP Post Request
Upload a File to the Folder - Response
Run Command - Make HTTP Post Request
curl -X POST "{{apiUrl}}/Run/{{toolSlugOwner}}/{{toolSlugProject}}" \
-H "Content-Type: {{contentType}}" \
-H "x-api-key: ${YOUR_API_KEY}" \
-H "x-nonce: ${NONCE}" \
-H "x-signature: ${SIGNATURE}" \
-d '{{toolParameters}}';
Run Command - Response
//response body
{
"errors": [],
"taskid": "2221",
"socketaccesstoken": "eDcCm5yyUfIvMFspTwww49OUfgXkQt",
"result": true
}
Get Task Detail - Make HTTP Post Request
curl -X POST "{{apiUrl}}/Task/Detail" \
-H "Content-Type: {{contentType}}" \
-H "x-api-key: ${YOUR_API_KEY}" \
-H "x-nonce: ${NONCE}" \
-H "x-signature: ${SIGNATURE}" \
-d '{
"tasktoken": 'eDcCm5yyUfIvMFspTwww49OUfgXkQt',
}';
Get Task Detail - Response
//response body
{
"total": "1",
"errors": [],
"tasklist": [
{
"id": "2221",
"uuid": "15bce51f-442f-4f44-a71d-13c6374a62bd",
"name": "",
"socketaccesstoken": "eDcCm5yyUfIvMFspTwww49OUfgXkQt",
"parameters": {
"inputImage": "https://api.wiro.ai/v1/File/mCmUXgZLG1FNjjjwmbtPFr2LVJA112/inputImage-6060136.png"
},
"debugoutput": "",
"debugerror": "",
"starttime": "1734513809",
"endtime": "1734513813",
"elapsedseconds": "6.0000",
"status": "task_postprocess_end",
"cps": "0.000585000000",
"totalcost": "0.003510000000",
"guestid": null,
"projectid": "699",
"modelid": "598",
"description": "",
"basemodelid": "0",
"runtype": "model",
"modelfolderid": "",
"modelfileid": "",
"callbackurl": "",
"marketplaceid": null,
"createtime": "1734513807",
"canceltime": "0",
"assigntime": "1734513807",
"accepttime": "1734513807",
"preprocessstarttime": "1734513807",
"preprocessendtime": "1734513807",
"postprocessstarttime": "1734513813",
"postprocessendtime": "1734513814",
"pexit": "0",
"categories": "["tool","image-to-image","quick-showcase","compare-landscape"]",
"outputs": [
{
"id": "6bc392c93856dfce3a7d1b4261e15af3",
"name": "0.png",
"contenttype": "image/png",
"parentid": "6c1833f39da71e6175bf292b18779baf",
"uuid": "15bce51f-442f-4f44-a71d-13c6374a62bd",
"size": "202472",
"addedtime": "1734513812",
"modifiedtime": "1734513812",
"accesskey": "dFKlMApaSgMeHKsJyaDeKrefcHahUK",
"foldercount": "0",
"filecount": "0",
"ispublic": 0,
"expiretime": null,
"url": "https://cdn1.wiro.ai/6a6af820-c5050aee-40bd7b83-a2e186c6-7f61f7da-3894e49c-fc0eeb66-9b500fe2/0.png"
}
],
"size": "202472"
}
],
"result": true
}
Get Task Process Information and Results with Socket Connection
<script type="text/javascript">
window.addEventListener('load',function() {
//Get socketAccessToken from task run response
var SocketAccessToken = 'eDcCm5yyUfIvMFspTwww49OUfgXkQt';
WebSocketConnect(SocketAccessToken);
});
//Connect socket with connection id and register task socket token
async function WebSocketConnect(accessTokenFromAPI) {
if ("WebSocket" in window) {
var ws = new WebSocket("wss://socket.wiro.ai/v1");
ws.onopen = function() {
//Register task socket token which has been obtained from task run API response
ws.send('{"type": "task_info", "tasktoken": "' + accessTokenFromAPI + '"}');
};
ws.onmessage = function (evt) {
var msg = evt.data;
try {
var debugHtml = document.getElementById('debug');
debugHtml.innerHTML = debugHtml.innerHTML + "\n" + msg;
var msgJSON = JSON.parse(msg);
console.log('msgJSON: ', msgJSON);
if(msgJSON.type != undefined)
{
console.log('msgJSON.target: ',msgJSON.target);
switch(msgJSON.type) {
case 'task_queue':
console.log('Your task has been waiting in the queue.');
break;
case 'task_accept':
console.log('Your task has been accepted by the worker.');
break;
case 'task_preprocess_start':
console.log('Your task preprocess has been started.');
break;
case 'task_preprocess_end':
console.log('Your task preprocess has been ended.');
break;
case 'task_assign':
console.log('Your task has been assigned GPU and waiting in the queue.');
break;
case 'task_start':
console.log('Your task has been started.');
break;
case 'task_output':
console.log('Your task has been started and printing output log.');
console.log('Log: ', msgJSON.message);
break;
case 'task_error':
console.log('Your task has been started and printing error log.');
console.log('Log: ', msgJSON.message);
break;
case 'task_output_full':
console.log('Your task has been completed and printing full output log.');
break;
case 'task_error_full':
console.log('Your task has been completed and printing full error log.');
break;
case 'task_end':
console.log('Your task has been completed.');
break;
case 'task_postprocess_start':
console.log('Your task postprocess has been started.');
break;
case 'task_postprocess_end':
console.log('Your task postprocess has been completed.');
console.log('Outputs: ', msgJSON.message);
//output files will add ui
msgJSON.message.forEach(function(currentValue, index, arr){
console.log(currentValue);
var filesHtml = document.getElementById('files');
filesHtml.innerHTML = filesHtml.innerHTML + '<img src="' + currentValue.url + '" style="height:300px;">'
});
break;
}
}
} catch (e) {
console.log('e: ', e);
console.log('msg: ', msg);
}
};
ws.onclose = function() {
alert("Connection is closed...");
};
} else {
alert("WebSocket NOT supported by your Browser!");
}
}
</script>
Prepare UI Elements Inside Body Tag
<div id="files"></div>
<pre id="debug"></pre>
Model Card for Aya Expanse 8B

Aya Expanse 8B is an open-weight research release of a model with highly advanced multilingual capabilities. It focuses on pairing a highly performant pre-trained Command family of models with the result of a year’s dedicated research from Cohere For AI, including data arbitrage, multilingual preference training, safety tuning, and model merging. The result is a powerful multilingual large language model.
This model card corresponds to the 8-billion version of the Aya Expanse model. We also released an 32-billion version which you can find here.
- Developed by: Cohere For AI
- Point of Contact: Cohere For AI: cohere.for.ai
- License: CC-BY-NC, requires also adhering to C4AI's Acceptable Use Policy
- Model: Aya Expanse 8B
- Model Size: 8 billion parameters
Supported Languages
We cover 23 languages: Arabic, Chinese (simplified & traditional), Czech, Dutch, English, French, German, Greek, Hebrew, Hebrew, Hindi, Indonesian, Italian, Japanese, Korean, Persian, Polish, Portuguese, Romanian, Russian, Spanish, Turkish, Ukrainian, and Vietnamese.
Try it: Aya Expanse in Action
Use the Cohere playground or our Hugging Face Space for interactive exploration.
How to Use Aya Expanse
Install the transformers library and load Aya Expanse 8B as follows:
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "CohereForAI/aya-expanse-8b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
# Format the message with the chat template
messages = [{"role": "user", "content": "Anneme onu ne kadar sevdiğimi anlatan bir mektup yaz"}]
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Anneme onu ne kadar sevdiğimi anlatan bir mektup yaz<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
gen_tokens = model.generate(
input_ids,
max_new_tokens=100,
do_sample=True,
temperature=0.3,
)
gen_text = tokenizer.decode(gen_tokens[0])
print(gen_text)
Example Notebooks
Fine-Tuning:
Community-Contributed Use Cases::
The following notebooks contributed by Cohere For AI Community members show how Aya Expanse can be used for different use cases:
Model Details
Input: Models input text only.
Output: Models generate text only.
Model Architecture: Aya Expanse 8B is an auto-regressive language model that uses an optimized transformer architecture. Post-training includes supervised finetuning, preference training, and model merging.
Languages covered: The model is particularly optimized for multilinguality and supports the following languages: Arabic, Chinese (simplified & traditional), Czech, Dutch, English, French, German, Greek, Hebrew, Hindi, Indonesian, Italian, Japanese, Korean, Persian, Polish, Portuguese, Romanian, Russian, Spanish, Turkish, Ukrainian, and Vietnamese
Context length: 8K
For more details about how the model was trained, check out our blogpost.
Evaluation
We evaluated Aya Expanse 8B against Gemma 2 9B, Llama 3.1 8B, Ministral 8B, and Qwen 2.5 7B using the dolly_human_edited
subset from the Aya Evaluation Suite dataset and m-ArenaHard, a dataset based on the Arena-Hard-Auto dataset and translated to the 23 languages we support in Aya Expanse 8B. Win-rates were determined using gpt-4o-2024-08-06 as a judge. For a conservative benchmark, we report results from gpt-4o-2024-08-06, though gpt-4o-mini scores showed even stronger performance.
The m-ArenaHard dataset, used to evaluate Aya Expanse’s capabilities, is publicly available here.




Model Card Contact
For errors or additional questions about details in this model card, contact [email protected].
Terms of Use
We hope that the release of this model will make community-based research efforts more accessible, by releasing the weights of a highly performant multilingual model to researchers all over the world. This model is governed by a CC-BY-NC License with an acceptable use addendum, and also requires adhering to C4AI's Acceptable Use Policy.
Cite
You can cite Aya Expanse using:
@misc{dang2024ayaexpansecombiningresearch,
title={Aya Expanse: Combining Research Breakthroughs for a New Multilingual Frontier},
author={John Dang and Shivalika Singh and Daniel D'souza and Arash Ahmadian and Alejandro Salamanca and Madeline Smith and Aidan Peppin and Sungjin Hong and Manoj Govindassamy and Terrence Zhao and Sandra Kublik and Meor Amer and Viraat Aryabumi and Jon Ander Campos and Yi-Chern Tan and Tom Kocmi and Florian Strub and Nathan Grinsztajn and Yannis Flet-Berliac and Acyr Locatelli and Hangyu Lin and Dwarak Talupuru and Bharat Venkitesh and David Cairuz and Bowen Yang and Tim Chung and Wei-Yin Ko and Sylvie Shang Shi and Amir Shukayev and Sammie Bae and Aleksandra Piktus and Roman Castagné and Felipe Cruz-Salinas and Eddie Kim and Lucas Crawhall-Stein and Adrien Morisot and Sudip Roy and Phil Blunsom and Ivan Zhang and Aidan Gomez and Nick Frosst and Marzieh Fadaee and Beyza Ermis and Ahmet Üstün and Sara Hooker},
year={2024},
eprint={2412.04261},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2412.04261},
}