Guest



Sign inSignup
  • Home
  • Dashboard
  • Tools
  • Store
  • Pricing

Welcome

HomeDashboardToolsStore
Use cases
Human Resources
Retail & E-commerce
Interior Design
Fashion AI
Creative Content Solutions
Sports & Fitness
GenAI Video Tools
PricingDocumentation
Guest



Sign inSignup

Task History

  • Runnings
  • Models
  • Trains

You don't have task yet.

Go to Tools

Welcome

  • Tools
  • Qwen/Qwen2.5-Coder-32B-Instruct
Tools
Task History

Qwen/ Qwen2.5-Coder-32B-Instruct

2983runs
0Comments

API Sample: Qwen/Qwen2.5-Coder-32B-Instruct

You don't have any projects yet. To be able to use our api service effectively, please sign in/up and create a project.

Get your api key
  • curl
  • nodejs
  • csharp
  • php
  • swift
  • dart
  • kotlin
  • go
  • python

Prepare Authentication Signature

                          
  //Sign up Wiro dashboard and create project
  export YOUR_API_KEY="{{useSelectedProjectAPIKey}}"; 
  export YOUR_API_SECRET="XXXXXXXXX"; 

   //unix time or any random integer value
  export NONCE=$(date +%s);

  //hmac-SHA256 (YOUR_API_SECRET+Nonce) with YOUR_API_KEY
  export SIGNATURE="$(echo -n "${YOUR_API_SECRET}${NONCE}" | openssl dgst -sha256 -hmac "${YOUR_API_KEY}")";
      
                        

Create a New Folder - Make HTTP Post Request

Create a New Folder - Response

Upload a File to the Folder - Make HTTP Post Request

Upload a File to the Folder - Response

Run Command - Make HTTP Post Request

                          
  curl -X POST "{{apiUrl}}/Run/{{toolSlugOwner}}/{{toolSlugProject}}"  \
  -H "Content-Type: {{contentType}}" \
  -H "x-api-key: ${YOUR_API_KEY}" \
  -H "x-nonce: ${NONCE}" \
  -H "x-signature: ${SIGNATURE}" \
  -d '{{toolParameters}}';

      
                        

Run Command - Response

                          
  //response body
  {
      "errors": [],
      "taskid": "2221",
      "socketaccesstoken": "eDcCm5yyUfIvMFspTwww49OUfgXkQt",
      "result": true
  }
      
                        

Get Task Detail - Make HTTP Post Request

                          
  curl -X POST "{{apiUrl}}/Task/Detail"  \
  -H "Content-Type: {{contentType}}" \
  -H "x-api-key: ${YOUR_API_KEY}" \
  -H "x-nonce: ${NONCE}" \
  -H "x-signature: ${SIGNATURE}" \
  -d '{
    "tasktoken": 'eDcCm5yyUfIvMFspTwww49OUfgXkQt',
  }';

      
                        

Get Task Detail - Response

                          
  //response body
  {
    "total": "1",
    "errors": [],
    "tasklist": [
        {
            "id": "2221",
            "uuid": "15bce51f-442f-4f44-a71d-13c6374a62bd",
            "name": "",
            "socketaccesstoken": "eDcCm5yyUfIvMFspTwww49OUfgXkQt",
            "parameters": {
                "inputImage": "https://api.wiro.ai/v1/File/mCmUXgZLG1FNjjjwmbtPFr2LVJA112/inputImage-6060136.png"
            },
            "debugoutput": "",
            "debugerror": "",
            "starttime": "1734513809",
            "endtime": "1734513813",
            "elapsedseconds": "6.0000",
            "status": "task_postprocess_end",
            "cps": "0.000585000000",
            "totalcost": "0.003510000000",
            "guestid": null,
            "projectid": "699",
            "modelid": "598",
            "description": "",
            "basemodelid": "0",
            "runtype": "model",
            "modelfolderid": "",
            "modelfileid": "",
            "callbackurl": "",
            "marketplaceid": null,
            "createtime": "1734513807",
            "canceltime": "0",
            "assigntime": "1734513807",
            "accepttime": "1734513807",
            "preprocessstarttime": "1734513807",
            "preprocessendtime": "1734513807",
            "postprocessstarttime": "1734513813",
            "postprocessendtime": "1734513814",
            "pexit": "0",
            "categories": "["tool","image-to-image","quick-showcase","compare-landscape"]",
            "outputs": [
                {
                    "id": "6bc392c93856dfce3a7d1b4261e15af3",
                    "name": "0.png",
                    "contenttype": "image/png",
                    "parentid": "6c1833f39da71e6175bf292b18779baf",
                    "uuid": "15bce51f-442f-4f44-a71d-13c6374a62bd",
                    "size": "202472",
                    "addedtime": "1734513812",
                    "modifiedtime": "1734513812",
                    "accesskey": "dFKlMApaSgMeHKsJyaDeKrefcHahUK",
                    "foldercount": "0",
                    "filecount": "0",
                    "ispublic": 0,
                    "expiretime": null,
                    "url": "https://cdn1.wiro.ai/6a6af820-c5050aee-40bd7b83-a2e186c6-7f61f7da-3894e49c-fc0eeb66-9b500fe2/0.png"
                }
            ],
            "size": "202472"
        }
    ],
    "result": true
  }
      
                        

Get Task Process Information and Results with Socket Connection

                          
<script type="text/javascript">
  window.addEventListener('load',function() {
    //Get socketAccessToken from task run response
    var SocketAccessToken = 'eDcCm5yyUfIvMFspTwww49OUfgXkQt';
    WebSocketConnect(SocketAccessToken);
  });

  //Connect socket with connection id and register task socket token
  async function WebSocketConnect(accessTokenFromAPI) {
    if ("WebSocket" in window) {
        var ws = new WebSocket("wss://socket.wiro.ai/v1");
        ws.onopen = function() {  
          //Register task socket token which has been obtained from task run API response
          ws.send('{"type": "task_info", "tasktoken": "' + accessTokenFromAPI + '"}'); 
        };

        ws.onmessage = function (evt) { 
          var msg = evt.data;

          try {
              var debugHtml = document.getElementById('debug');
              debugHtml.innerHTML = debugHtml.innerHTML + "\n" + msg;

              var msgJSON = JSON.parse(msg);
              console.log('msgJSON: ', msgJSON);

              if(msgJSON.type != undefined)
              {
                console.log('msgJSON.target: ',msgJSON.target);
                switch(msgJSON.type) {
                    case 'task_queue':
                      console.log('Your task has been waiting in the queue.');
                    break;
                    case 'task_accept':
                      console.log('Your task has been accepted by the worker.');
                    break;
                    case 'task_preprocess_start':
                      console.log('Your task preprocess has been started.');
                    break;
                    case 'task_preprocess_end':
                      console.log('Your task preprocess has been ended.');
                    break;
                    case 'task_assign':
                      console.log('Your task has been assigned GPU and waiting in the queue.');
                    break;
                    case 'task_start':
                      console.log('Your task has been started.');
                    break;
                    case 'task_output':
                      console.log('Your task has been started and printing output log.');
                      console.log('Log: ', msgJSON.message);
                    break;
                    case 'task_error':
                      console.log('Your task has been started and printing error log.');
                      console.log('Log: ', msgJSON.message);
                    break;
                   case 'task_output_full':
                      console.log('Your task has been completed and printing full output log.');
                    break;
                    case 'task_error_full':
                      console.log('Your task has been completed and printing full error log.');
                    break;
                    case 'task_end':
                      console.log('Your task has been completed.');
                    break;
                    case 'task_postprocess_start':
                      console.log('Your task postprocess has been started.');
                    break;
                    case 'task_postprocess_end':
                      console.log('Your task postprocess has been completed.');
                      console.log('Outputs: ', msgJSON.message);
                      //output files will add ui
                      msgJSON.message.forEach(function(currentValue, index, arr){
                          console.log(currentValue);
                          var filesHtml = document.getElementById('files');
                          filesHtml.innerHTML = filesHtml.innerHTML + '<img src="' + currentValue.url + '" style="height:300px;">'
                      });
                    break;
                }
              }
          } catch (e) {
            console.log('e: ', e);
            console.log('msg: ', msg);
          }
        };

        ws.onclose = function() { 
          alert("Connection is closed..."); 
        };
    } else {              
        alert("WebSocket NOT supported by your Browser!");
    }
  }
</script>
      
                        

Prepare UI Elements Inside Body Tag

                          
  <div id="files"></div>
  <pre id="debug"></pre>
      
                        

Prompt to send to the model.

Your request will cost $0.0006 per second.

(Total cost varies depending on the request’s execution time.)
1736807139 Report This Model






Qwen2.5-Coder-32B-Instruct



Chat







Introduction


Qwen2.5-Coder is the latest series of Code-Specific Qwen large language models (formerly known as CodeQwen). As of now, Qwen2.5-Coder has covered six mainstream model sizes, 0.5, 1.5, 3, 7, 14, 32 billion parameters, to meet the needs of different developers. Qwen2.5-Coder brings the following improvements upon CodeQwen1.5:



  • Significantly improvements in code generation, code reasoning and code fixing. Base on the strong Qwen2.5, we scale up the training tokens into 5.5 trillion including source code, text-code grounding, Synthetic data, etc. Qwen2.5-Coder-32B has become the current state-of-the-art open-source codeLLM, with its coding abilities matching those of GPT-4o.

  • A more comprehensive foundation for real-world applications such as Code Agents. Not only enhancing coding capabilities but also maintaining its strengths in mathematics and general competencies.

  • Long-context Support up to 128K tokens.


This repo contains the instruction-tuned 32B Qwen2.5-Coder model, which has the following features:



  • Type: Causal Language Models

  • Training Stage: Pretraining & Post-training

  • Architecture: transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias

  • Number of Parameters: 32.5B

  • Number of Paramaters (Non-Embedding): 31.0B

  • Number of Layers: 64

  • Number of Attention Heads (GQA): 40 for Q and 8 for KV

  • Context Length: Full 131,072 tokens

    • Please refer to this section for detailed instructions on how to deploy Qwen2.5 for handling long texts.




For more details, please refer to our blog, GitHub, Documentation, Arxiv.







Requirements


The code of Qwen2.5-Coder has been in the latest Hugging face transformers and we advise you to use the latest version of transformers.


With transformers<4.37.0, you will encounter the following error:


KeyError: 'qwen2'






Quickstart


Here provides a code snippet with apply_chat_template to show you how to load the tokenizer and model and how to generate contents.


from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "Qwen/Qwen2.5-Coder-32B-Instruct"

model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "write a quick sort algorithm."
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]






Processing Long Texts


The current config.json is set for context length up to 32,768 tokens.
To handle extensive inputs exceeding 32,768 tokens, we utilize YaRN, a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.


For supported frameworks, you could add the following to config.json to enable YaRN:


{
...,
"rope_scaling": {
"factor": 4.0,
"original_max_position_embeddings": 32768,
"type": "yarn"
}
}

For deployment, we recommend using vLLM.
Please refer to our Documentation for usage if you are not familar with vLLM.
Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, potentially impacting performance on shorter texts.
We advise adding the rope_scaling configuration only when processing long contexts is required.







Evaluation & Performance


Detailed evaluation results are reported in this 📑 blog.


For requirements on GPU memory and the respective throughput, see results here.







Citation


If you find our work helpful, feel free to give us a cite.


@article{hui2024qwen2,
title={Qwen2. 5-Coder Technical Report},
author={Hui, Binyuan and Yang, Jian and Cui, Zeyu and Yang, Jiaxi and Liu, Dayiheng and Zhang, Lei and Liu, Tianyu and Zhang, Jiajun and Yu, Bowen and Dang, Kai and others},
journal={arXiv preprint arXiv:2409.12186},
year={2024}
}
@article{qwen2,
title={Qwen2 Technical Report},
author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
journal={arXiv preprint arXiv:2407.10671},
year={2024}
}

Tools

View All

We couldn't find any matching results.

Qwen/Qwen2.5-0.5B-Instruct

Qwen/Qwen2.5-0.5B-Instruct is a compact 500 million parameter AI language model optimized for generating human-like responses and assisting with various natural language understanding tasks.
Run time: 1 second
2930 runs
0

Qwen/Qwen2.5-Math-7B-Instruct

Qwen2.5-Math-7B-Instruct is a large language model with 7 billion parameters, specialized in advanced mathematical problem-solving and reasoning. It is fine-tuned for instruction-based tasks and excels in fields like algebra, calculus, and quantitative analysis, making it suitable for research, education, and technical applications.
Run time: 1 second
2798 runs
0

Qwen/Qwen2.5-14B-Instruct

Qwen2.5-14B-Instruct is a large language model by Alibaba’s Qwen team, optimized for instruction-following tasks with 14 billion parameters. It offers strong reasoning, multilingual capabilities, and efficient performance, making it suitable for chatbots, content creation, and various AI-driven applications.
Run time: 1 second
2487 runs
0

Qwen/Qwen2.5-3B-Instruct

Qwen/Qwen2.5-3B-Instruct is a powerful 3 billion parameter AI language model designed to deliver high-quality, human-like responses across a wide range of natural language processing tasks.
Run time: 1 second
2232 runs
0

Qwen/Qwen2.5-32B-Instruct

Qwen2.5-32B-Instruct is a powerful large language model developed by Alibaba’s Qwen team, designed for instruction-following tasks with enhanced reasoning and natural language understanding capabilities. Optimized for efficiency and accuracy, it supports multi-turn conversations and complex queries, making it suitable for applications such as chatbots, content generation, and AI assistants.
Run time: 1 second
2793 runs
0

Qwen/Qwen2.5-1.5B-Instruct

Qwen/Qwen2.5-1.5B-Instruct is a 1.5 billion parameter AI language model designed to generate human-like responses based on user inputs.
Run time: 1 second
1825 runs
0

Select Language

Logo of nvidia programLogo of nvidia program
Wiro AI brings machine learning easily accessible to all in the cloud.
  • WIRO
  • About
  • Careers
  • Contact
  • Language Language
  • Product
  • Tools
  • Pricing
  • Roadmap
  • Changelog
  • Status
  • Documentation
  • Introduction
  • Start Your First Project
  • Example Projects

2023 © Wiro.ai | Terms of Service & Privacy Policy