Guest



Sign inSignup
  • Home
  • Dashboard
  • Tools
  • Wiro AppsApps
  • Pricing

Welcome

HomeDashboardToolsWiro AppsApps
Use cases
Human Resources
Retail & E-commerce
Interior Design
Fashion AI
Creative Content Solutions
Sports & Fitness
GenAI Video Tools
PricingDocumentation
Guest



Sign inSignup

Task History

  • Runnings
  • Models
  • Trains

You don't have task yet.

Go to Tools

Welcome

  • Tools
  • Salesforce/blip2-flan-t5-xl
Tools
Task History

Salesforce/ blip2-flan-t5-xl
Copy Prompt for LLM

View as Markdown
View as Markdown (Full)

2867runs
0Comments

API Sample: Salesforce/blip2-flan-t5-xl

You don't have any projects yet. To be able to use our api service effectively, please sign in/up and create a project.

Get your api key
  • curl
  • nodejs
  • csharp
  • php
  • swift
  • dart
  • kotlin
  • go
  • python

Prepare Authentication Signature

                          
  //Sign up Wiro dashboard and create project
  export YOUR_API_KEY="{{useSelectedProjectAPIKey}}"; 
  export YOUR_API_SECRET="XXXXXXXXX"; 

   //unix time or any random integer value
  export NONCE=$(date +%s);

  //hmac-SHA256 (YOUR_API_SECRET+Nonce) with YOUR_API_KEY
  export SIGNATURE="$(echo -n "${YOUR_API_SECRET}${NONCE}" | openssl dgst -sha256 -hmac "${YOUR_API_KEY}")";
      
                        

Create a New Folder - Make HTTP Post Request

Create a New Folder - Response

Upload a File to the Folder - Make HTTP Post Request

Upload a File to the Folder - Response

Run Command - Make HTTP Post Request

                          
  curl -X POST "{{apiUrl}}/Run/{{toolSlugOwner}}/{{toolSlugProject}}"  \
  -H "Content-Type: {{contentType}}" \
  -H "x-api-key: ${YOUR_API_KEY}" \
  -H "x-nonce: ${NONCE}" \
  -H "x-signature: ${SIGNATURE}" \
  -d '{{toolParameters}}';

      
                        

Run Command - Response

                          
  //response body
  {
      "errors": [],
      "taskid": "2221",
      "socketaccesstoken": "eDcCm5yyUfIvMFspTwww49OUfgXkQt",
      "result": true
  }
      
                        

Get Task Detail - Make HTTP Post Request

                          
  curl -X POST "{{apiUrl}}/Task/Detail"  \
  -H "Content-Type: {{contentType}}" \
  -H "x-api-key: ${YOUR_API_KEY}" \
  -H "x-nonce: ${NONCE}" \
  -H "x-signature: ${SIGNATURE}" \
  -d '{
    "tasktoken": 'eDcCm5yyUfIvMFspTwww49OUfgXkQt',
  }';

      
                        

Get Task Detail - Response

                          
  //response body
  {
    "total": "1",
    "errors": [],
    "tasklist": [
        {
            "id": "2221",
            "uuid": "15bce51f-442f-4f44-a71d-13c6374a62bd",
            "name": "",
            "socketaccesstoken": "eDcCm5yyUfIvMFspTwww49OUfgXkQt",
            "parameters": {
                "inputImage": "https://api.wiro.ai/v1/File/mCmUXgZLG1FNjjjwmbtPFr2LVJA112/inputImage-6060136.png"
            },
            "debugoutput": "",
            "debugerror": "",
            "starttime": "1734513809",
            "endtime": "1734513813",
            "elapsedseconds": "6.0000",
            "status": "task_postprocess_end",
            "cps": "0.000585000000",
            "totalcost": "0.003510000000",
            "guestid": null,
            "projectid": "699",
            "modelid": "598",
            "description": "",
            "basemodelid": "0",
            "runtype": "model",
            "modelfolderid": "",
            "modelfileid": "",
            "callbackurl": "",
            "marketplaceid": null,
            "createtime": "1734513807",
            "canceltime": "0",
            "assigntime": "1734513807",
            "accepttime": "1734513807",
            "preprocessstarttime": "1734513807",
            "preprocessendtime": "1734513807",
            "postprocessstarttime": "1734513813",
            "postprocessendtime": "1734513814",
            "pexit": "0",
            "categories": "["tool","image-to-image","quick-showcase","compare-landscape"]",
            "outputs": [
                {
                    "id": "6bc392c93856dfce3a7d1b4261e15af3",
                    "name": "0.png",
                    "contenttype": "image/png",
                    "parentid": "6c1833f39da71e6175bf292b18779baf",
                    "uuid": "15bce51f-442f-4f44-a71d-13c6374a62bd",
                    "size": "202472",
                    "addedtime": "1734513812",
                    "modifiedtime": "1734513812",
                    "accesskey": "dFKlMApaSgMeHKsJyaDeKrefcHahUK",
                    "foldercount": "0",
                    "filecount": "0",
                    "ispublic": 0,
                    "expiretime": null,
                    "url": "https://cdn1.wiro.ai/6a6af820-c5050aee-40bd7b83-a2e186c6-7f61f7da-3894e49c-fc0eeb66-9b500fe2/0.png"
                }
            ],
            "size": "202472"
        }
    ],
    "result": true
  }
      
                        

Get Task Process Information and Results with Socket Connection

                          
<script type="text/javascript">
  window.addEventListener('load',function() {
    //Get socketAccessToken from task run response
    var SocketAccessToken = 'eDcCm5yyUfIvMFspTwww49OUfgXkQt';
    WebSocketConnect(SocketAccessToken);
  });

  //Connect socket with connection id and register task socket token
  async function WebSocketConnect(accessTokenFromAPI) {
    if ("WebSocket" in window) {
        var ws = new WebSocket("wss://socket.wiro.ai/v1");
        ws.onopen = function() {  
          //Register task socket token which has been obtained from task run API response
          ws.send('{"type": "task_info", "tasktoken": "' + accessTokenFromAPI + '"}'); 
        };

        ws.onmessage = function (evt) { 
          var msg = evt.data;

          try {
              var debugHtml = document.getElementById('debug');
              debugHtml.innerHTML = debugHtml.innerHTML + "\n" + msg;

              var msgJSON = JSON.parse(msg);
              console.log('msgJSON: ', msgJSON);

              if(msgJSON.type != undefined)
              {
                console.log('msgJSON.target: ',msgJSON.target);
                switch(msgJSON.type) {
                    case 'task_queue':
                      console.log('Your task has been waiting in the queue.');
                    break;
                    case 'task_accept':
                      console.log('Your task has been accepted by the worker.');
                    break;
                    case 'task_preprocess_start':
                      console.log('Your task preprocess has been started.');
                    break;
                    case 'task_preprocess_end':
                      console.log('Your task preprocess has been ended.');
                    break;
                    case 'task_assign':
                      console.log('Your task has been assigned GPU and waiting in the queue.');
                    break;
                    case 'task_start':
                      console.log('Your task has been started.');
                    break;
                    case 'task_output':
                      console.log('Your task has been started and printing output log.');
                      console.log('Log: ', msgJSON.message);
                    break;
                    case 'task_error':
                      console.log('Your task has been started and printing error log.');
                      console.log('Log: ', msgJSON.message);
                    break;
                   case 'task_output_full':
                      console.log('Your task has been completed and printing full output log.');
                    break;
                    case 'task_error_full':
                      console.log('Your task has been completed and printing full error log.');
                    break;
                    case 'task_end':
                      console.log('Your task has been completed.');
                    break;
                    case 'task_postprocess_start':
                      console.log('Your task postprocess has been started.');
                    break;
                    case 'task_postprocess_end':
                      console.log('Your task postprocess has been completed.');
                      console.log('Outputs: ', msgJSON.message);
                      //output files will add ui
                      msgJSON.message.forEach(function(currentValue, index, arr){
                          console.log(currentValue);
                          var filesHtml = document.getElementById('files');
                          filesHtml.innerHTML = filesHtml.innerHTML + '<img src="' + currentValue.url + '" style="height:300px;">'
                      });
                    break;
                }
              }
          } catch (e) {
            console.log('e: ', e);
            console.log('msg: ', msg);
          }
        };

        ws.onclose = function() { 
          alert("Connection is closed..."); 
        };
    } else {              
        alert("WebSocket NOT supported by your Browser!");
    }
  }
</script>
      
                        

Prepare UI Elements Inside Body Tag

                          
  <div id="files"></div>
  <pre id="debug"></pre>
      
                        

Choose an image that will re-generate

Choose an image URL that will re-generate

Tell us about any details you want to generate

Salesforce-blip2-flan-t5-xl-sample-3.txt
Salesforce-blip2-flan-t5-xl-sample-4.txt
1735809333 Report This Model






BLIP-2, Flan T5-xl, pre-trained only


BLIP-2 model, leveraging Flan T5-xl (a large language model).
It was introduced in the paper BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models by Li et al. and first released in this repository.
Disclaimer: The team releasing BLIP-2 did not write a model card for this model so this model card has been written by the Hugging Face team.





Model description


BLIP-2 consists of 3 models: a CLIP-like image encoder, a Querying Transformer (Q-Former) and a large language model.
The authors initialize the weights of the image encoder and large language model from pre-trained checkpoints and keep them frozen
while training the Querying Transformer, which is a BERT-like Transformer encoder that maps a set of "query tokens" to query embeddings,
which bridge the gap between the embedding space of the image encoder and the large language model.
The goal for the model is simply to predict the next text token, giving the query embeddings and the previous text.

This allows the model to be used for tasks like:

image captioning
visual question answering (VQA)
chat-like conversations by feeding the image and the previous conversation as prompt to the model






Direct Use and Downstream Use


You can use the raw model for conditional text generation given an image and optional text. See the model hub to look for
fine-tuned versions on a task that interests you.





Bias, Risks, Limitations, and Ethical Considerations


BLIP2-FlanT5 uses off-the-shelf Flan-T5 as the language model. It inherits the same risks and limitations from Flan-T5:

Language models, including Flan-T5, can potentially be used for language generation in a harmful way, according to Rae et al. (2021). Flan-T5 should not be used directly in any application, without a prior assessment of safety and fairness concerns specific to the application.

BLIP2 is fine-tuned on image-text datasets (e.g. LAION ) collected from the internet. As a result the model itself is potentially vulnerable to generating equivalently inappropriate content or replicating inherent biases in the underlying data.
BLIP2 has not been tested in real world applications. It should not be directly deployed in any applications. Researchers should first carefully assess the safety and fairness of the model in relation to the specific context they’re being deployed within.





How to use


For code examples, we refer to the documentation.





Running the model on CPU



Click to expand

import requests
from PIL import Image
from transformers import BlipProcessor, Blip2ForConditionalGeneration

processor = BlipProcessor.from_pretrained("Salesforce/blip2-flan-t5-xl")
model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-flan-t5-xl")

img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')

question = "how many dogs are in the picture?"
inputs = processor(raw_image, question, return_tensors="pt")

out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))








Running the model on GPU







In full precision



Click to expand

# pip install accelerate
import requests
from PIL import Image
from transformers import Blip2Processor, Blip2ForConditionalGeneration

processor = Blip2Processor.from_pretrained("Salesforce/blip2-flan-t5-xl")
model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-flan-t5-xl", device_map="auto")

img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')

question = "how many dogs are in the picture?"
inputs = processor(raw_image, question, return_tensors="pt").to("cuda")

out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))








In half precision (float16)



Click to expand

# pip install accelerate
import torch
import requests
from PIL import Image
from transformers import Blip2Processor, Blip2ForConditionalGeneration

processor = Blip2Processor.from_pretrained("Salesforce/blip2-flan-t5-xl")
model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-flan-t5-xl", torch_dtype=torch.float16, device_map="auto")

img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')

question = "how many dogs are in the picture?"
inputs = processor(raw_image, question, return_tensors="pt").to("cuda", torch.float16)

out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))








In 8-bit precision (int8)



Click to expand

# pip install accelerate bitsandbytes
import torch
import requests
from PIL import Image
from transformers import Blip2Processor, Blip2ForConditionalGeneration

processor = Blip2Processor.from_pretrained("Salesforce/blip2-flan-t5-xl")
model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-flan-t5-xl", load_in_8bit=True, device_map="auto")

img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')

question = "how many dogs are in the picture?"
inputs = processor(raw_image, question, return_tensors="pt").to("cuda", torch.float16)

out = model.generate(**inputs)
print(processor.decode(out[0], skip_special_tokens=True))

Tools

View All

We couldn't find any matching results.

Salesforce/blip-image-captioning-large

BLIP is a model that is able to perform various multi-modal tasks including visual question answering and image captioning. This is the blip image captioning large model.
Run time: 20 seconds
1995 runs
0

Salesforce/blip-image-captioning-base

BLIP is a model that is able to perform various multi-modal tasks including visual question answering and image captioning. This is the blip image captioning base model.
Run time: 20 seconds
1675 runs
0

Salesforce/blip2-opt-2.7b

BLIP-2 creates captions or detailed descriptions for images.
Run time: 20 seconds
1259 runs
0

llava-hf/llava-v1.6-mistral-7b-hf

LLaVA is a tool that generates descriptions for a given image.
Run time: 20 seconds
2255 runs
0

Salesforce/blip2-flan-t5-xl

BLIP-2 creates captions or detailed descriptions for images. This is BLIP-2 model, leveraging Flan T5-xl.
Run time: 20 seconds
1118 runs
0

Select Language

Logo of nvidia programLogo of nvidia program
Wiro AI brings machine learning easily accessible to all in the cloud.
  • WIRO
  • About
  • Careers
  • Contact
  • Language Language
  • Product
  • Tools
  • Pricing
  • Roadmap
  • Changelog
  • Status
  • Documentation
  • Introduction
  • Start Your First Project
  • Example Projects

2023 © Wiro.ai | Terms of Service & Privacy Policy