Guest



Sign inSignup
  • Home
  • Dashboard
  • Models
  • Wiro AppsApps
  • Pricing
  • Blog

Welcome

HomeDashboardModelsWiro AppsAppsPricing
Blog
Documentation
Guest



Sign inSignup

Task History

  • Runnings
  • Models
  • Trains

You don't have task yet.

Go to Models

Welcome

  • Models
  • utter-project/eurollm-1-7b-instruct
Models
Task History

utter-project/ eurollm-1-7b-instruct
Copy Prompt for LLM

View as Markdown
View as Markdown (Full)

150runs
0Comments

API Sample: utter-project/eurollm-1-7b-instruct

You don't have any projects yet. To be able to use our api service effectively, please sign in/up and create a project.

Get your api key
  • curl
  • nodejs
  • csharp
  • php
  • swift
  • dart
  • kotlin
  • go
  • python

Prepare Authentication Signature

                          
  //Sign up Wiro dashboard and create project
  export YOUR_API_KEY="{{useSelectedProjectAPIKey}}"; 
  export YOUR_API_SECRET="XXXXXXXXX"; 

   //unix time or any random integer value
  export NONCE=$(date +%s);

  //hmac-SHA256 (YOUR_API_SECRET+Nonce) with YOUR_API_KEY
  export SIGNATURE="$(echo -n "${YOUR_API_SECRET}${NONCE}" | openssl dgst -sha256 -hmac "${YOUR_API_KEY}")";
      
                        

Create a New Folder - Make HTTP Post Request

Create a New Folder - Response

Upload a File to the Folder - Make HTTP Post Request

Upload a File to the Folder - Response

Run Command - Make HTTP Post Request

                          
  curl -X POST "{{apiUrl}}/Run/{{toolSlugOwner}}/{{toolSlugProject}}"  \
  -H "Content-Type: {{contentType}}" \
  -H "x-api-key: ${YOUR_API_KEY}" \
  -H "x-nonce: ${NONCE}" \
  -H "x-signature: ${SIGNATURE}" \
  -d '{{toolParameters}}';

      
                        

Run Command - Response

                          
  //response body
  {
      "errors": [],
      "taskid": "2221",
      "socketaccesstoken": "eDcCm5yyUfIvMFspTwww49OUfgXkQt",
      "result": true
  }
      
                        

Get Task Detail - Make HTTP Post Request with Task Token

                          
  curl -X POST "{{apiUrl}}/Task/Detail"  \
  -H "Content-Type: {{contentType}}" \
  -H "x-api-key: ${YOUR_API_KEY}" \
  -H "x-nonce: ${NONCE}" \
  -H "x-signature: ${SIGNATURE}" \
  -d '{
    "tasktoken": "eDcCm5yyUfIvMFspTwww49OUfgXkQt"
  }';

      
                        

Get Task Detail - Make HTTP Post Request with Task ID

                          
  curl -X POST "{{apiUrl}}/Task/Detail"  \
  -H "Content-Type: {{contentType}}" \
  -H "x-api-key: ${YOUR_API_KEY}" \
  -H "x-nonce: ${NONCE}" \
  -H "x-signature: ${SIGNATURE}" \
  -d '{
    "taskid": "534574"
  }';

      
                        

Get Task Detail - Response

                          
  //response body
  {
    "total": "1",
    "errors": [],
    "tasklist": [
        {
            "id": "534574",
            "uuid": "15bce51f-442f-4f44-a71d-13c6374a62bd",
            "name": "",
            "socketaccesstoken": "eDcCm5yyUfIvMFspTwww49OUfgXkQt",
            "parameters": {
                "inputImage": "https://api.wiro.ai/v1/File/mCmUXgZLG1FNjjjwmbtPFr2LVJA112/inputImage-6060136.png"
            },
            "debugoutput": "",
            "debugerror": "",
            "starttime": "1734513809",
            "endtime": "1734513813",
            "elapsedseconds": "6.0000",
            "status": "task_postprocess_end",
            "cps": "0.000585000000",
            "totalcost": "0.003510000000",
            "guestid": null,
            "projectid": "699",
            "modelid": "598",
            "description": "",
            "basemodelid": "0",
            "runtype": "model",
            "modelfolderid": "",
            "modelfileid": "",
            "callbackurl": "",
            "marketplaceid": null,
            "createtime": "1734513807",
            "canceltime": "0",
            "assigntime": "1734513807",
            "accepttime": "1734513807",
            "preprocessstarttime": "1734513807",
            "preprocessendtime": "1734513807",
            "postprocessstarttime": "1734513813",
            "postprocessendtime": "1734513814",
            "pexit": "0",
            "categories": "["tool","image-to-image","quick-showcase","compare-landscape"]",
            "outputs": [
                {
                    "id": "6bc392c93856dfce3a7d1b4261e15af3",
                    "name": "0.png",
                    "contenttype": "image/png",
                    "parentid": "6c1833f39da71e6175bf292b18779baf",
                    "uuid": "15bce51f-442f-4f44-a71d-13c6374a62bd",
                    "size": "202472",
                    "addedtime": "1734513812",
                    "modifiedtime": "1734513812",
                    "accesskey": "dFKlMApaSgMeHKsJyaDeKrefcHahUK",
                    "foldercount": "0",
                    "filecount": "0",
                    "ispublic": 0,
                    "expiretime": null,
                    "url": "https://cdn1.wiro.ai/6a6af820-c5050aee-40bd7b83-a2e186c6-7f61f7da-3894e49c-fc0eeb66-9b500fe2/0.png"
                }
            ],
            "size": "202472"
        }
    ],
    "result": true
  }
      
                        

Kill Task - Make HTTP Post Request with Task ID

                          
  curl -X POST "{{apiUrl}}/Task/Kill"  \
  -H "Content-Type: {{contentType}}" \
  -H "x-api-key: ${YOUR_API_KEY}" \
  -H "x-nonce: ${NONCE}" \
  -H "x-signature: ${SIGNATURE}" \
  -d '{
    "taskid": "534574"
  }';

      
                        

Kill Task - Make HTTP Post Request with Socket Access Token

                          
  curl -X POST "{{apiUrl}}/Task/Kill"  \
  -H "Content-Type: {{contentType}}" \
  -H "x-api-key: ${YOUR_API_KEY}" \
  -H "x-nonce: ${NONCE}" \
  -H "x-signature: ${SIGNATURE}" \
  -d '{
    "socketaccesstoken": "ZpYote30on42O4jjHXNiKmrWAZqbRE"
  }';

      
                        

Kill Task - Response

                          
  //response body
  {
    "errors": [],
    "tasklist": [
        {
            "id": "534574",
            "uuid": "15bce51f-442f-4f44-a71d-13c6374a62bd",
            "name": "",
            "socketaccesstoken": "ZpYote30on42O4jjHXNiKmrWAZqbRE",
            "parameters": {
                "inputImage": "https://api.wiro.ai/v1/File/mCmUXgZLG1FNjjjwmbtPFr2LVJA112/inputImage-6060136.png"
            },
            "debugoutput": "",
            "debugerror": "",
            "starttime": "1734513809",
            "endtime": "1734513813",
            "elapsedseconds": "6.0000",
            "status": "task_cancel",
            "cps": "0.000585000000",
            "totalcost": "0.003510000000",
            "guestid": null,
            "projectid": "699",
            "modelid": "598",
            "description": "",
            "basemodelid": "0",
            "runtype": "model",
            "modelfolderid": "",
            "modelfileid": "",
            "callbackurl": "",
            "marketplaceid": null,
            "createtime": "1734513807",
            "canceltime": "0",
            "assigntime": "1734513807",
            "accepttime": "1734513807",
            "preprocessstarttime": "1734513807",
            "preprocessendtime": "1734513807",
            "postprocessstarttime": "1734513813",
            "postprocessendtime": "1734513814",
            "pexit": "0",
            "categories": "["tool","image-to-image","quick-showcase","compare-landscape"]",
            "outputs": [
                {
                    "id": "6bc392c93856dfce3a7d1b4261e15af3",
                    "name": "0.png",
                    "contenttype": "image/png",
                    "parentid": "6c1833f39da71e6175bf292b18779baf",
                    "uuid": "15bce51f-442f-4f44-a71d-13c6374a62bd",
                    "size": "202472",
                    "addedtime": "1734513812",
                    "modifiedtime": "1734513812",
                    "accesskey": "dFKlMApaSgMeHKsJyaDeKrefcHahUK",
                    "foldercount": "0",
                    "filecount": "0",
                    "ispublic": 0,
                    "expiretime": null,
                    "url": "https://cdn1.wiro.ai/6a6af820-c5050aee-40bd7b83-a2e186c6-7f61f7da-3894e49c-fc0eeb66-9b500fe2/0.png"
                }
            ],
            "size": "202472"
        }
    ],
    "result": true
  }
      
                        

Cancel Task - Make HTTP Post Request (For tasks on queue)

                          
  curl -X POST "{{apiUrl}}/Task/Cancel"  \
  -H "Content-Type: {{contentType}}" \
  -H "x-api-key: ${YOUR_API_KEY}" \
  -H "x-nonce: ${NONCE}" \
  -H "x-signature: ${SIGNATURE}" \
  -d '{
    "taskid": "634574"
  }';

      
                        

Cancel Task - Response

                          
  //response body
  {
    "errors": [],
    "tasklist": [
        {
            "id": "634574",
            "uuid": "15bce51f-442f-4f44-a71d-13c6374a62bd",
            "name": "",
            "socketaccesstoken": "ZpYote30on42O4jjHXNiKmrWAZqbRE",
            "parameters": {
                "inputImage": "https://api.wiro.ai/v1/File/mCmUXgZLG1FNjjjwmbtPFr2LVJA112/inputImage-6060136.png"
            },
            "debugoutput": "",
            "debugerror": "",
            "starttime": "1734513809",
            "endtime": "1734513813",
            "elapsedseconds": "6.0000",
            "status": "task_cancel",
            "cps": "0.000585000000",
            "totalcost": "0.003510000000",
            "guestid": null,
            "projectid": "699",
            "modelid": "598",
            "description": "",
            "basemodelid": "0",
            "runtype": "model",
            "modelfolderid": "",
            "modelfileid": "",
            "callbackurl": "",
            "marketplaceid": null,
            "createtime": "1734513807",
            "canceltime": "0",
            "assigntime": "1734513807",
            "accepttime": "1734513807",
            "preprocessstarttime": "1734513807",
            "preprocessendtime": "1734513807",
            "postprocessstarttime": "1734513813",
            "postprocessendtime": "1734513814",
            "pexit": "0",
            "categories": "["tool","image-to-image","quick-showcase","compare-landscape"]",
            "outputs": [
                {
                    "id": "6bc392c93856dfce3a7d1b4261e15af3",
                    "name": "0.png",
                    "contenttype": "image/png",
                    "parentid": "6c1833f39da71e6175bf292b18779baf",
                    "uuid": "15bce51f-442f-4f44-a71d-13c6374a62bd",
                    "size": "202472",
                    "addedtime": "1734513812",
                    "modifiedtime": "1734513812",
                    "accesskey": "dFKlMApaSgMeHKsJyaDeKrefcHahUK",
                    "foldercount": "0",
                    "filecount": "0",
                    "ispublic": 0,
                    "expiretime": null,
                    "url": "https://cdn1.wiro.ai/6a6af820-c5050aee-40bd7b83-a2e186c6-7f61f7da-3894e49c-fc0eeb66-9b500fe2/0.png"
                }
            ],
            "size": "202472"
        }
    ],
    "result": true
  }
      
                        

Get Task Process Information and Results with Socket Connection

                          
<script type="text/javascript">
  window.addEventListener('load',function() {
    //Get socketAccessToken from task run response
    var SocketAccessToken = 'eDcCm5yyUfIvMFspTwww49OUfgXkQt';
    WebSocketConnect(SocketAccessToken);
  });

  //Connect socket with connection id and register task socket token
  async function WebSocketConnect(accessTokenFromAPI) {
    if ("WebSocket" in window) {
        var ws = new WebSocket("wss://socket.wiro.ai/v1");
        ws.onopen = function() {  
          //Register task socket token which has been obtained from task run API response
          ws.send('{"type": "task_info", "tasktoken": "' + accessTokenFromAPI + '"}'); 
        };

        ws.onmessage = function (evt) { 
          var msg = evt.data;

          try {
              var debugHtml = document.getElementById('debug');
              debugHtml.innerHTML = debugHtml.innerHTML + "\n" + msg;

              var msgJSON = JSON.parse(msg);
              console.log('msgJSON: ', msgJSON);

              if(msgJSON.type != undefined)
              {
                console.log('msgJSON.target: ',msgJSON.target);
                switch(msgJSON.type) {
                    case 'task_queue':
                      console.log('Your task has been waiting in the queue.');
                    break;
                    case 'task_accept':
                      console.log('Your task has been accepted by the worker.');
                    break;
                    case 'task_preprocess_start':
                      console.log('Your task preprocess has been started.');
                    break;
                    case 'task_preprocess_end':
                      console.log('Your task preprocess has been ended.');
                    break;
                    case 'task_assign':
                      console.log('Your task has been assigned GPU and waiting in the queue.');
                    break;
                    case 'task_start':
                      console.log('Your task has been started.');
                    break;
                    case 'task_output':
                      console.log('Your task has been started and printing output log.');
                      console.log('Log: ', msgJSON.message);
                    break;
                    case 'task_error':
                      console.log('Your task has been started and printing error log.');
                      console.log('Log: ', msgJSON.message);
                    break;
                   case 'task_output_full':
                      console.log('Your task has been completed and printing full output log.');
                    break;
                    case 'task_error_full':
                      console.log('Your task has been completed and printing full error log.');
                    break;
                    case 'task_end':
                      console.log('Your task has been completed.');
                    break;
                    case 'task_postprocess_start':
                      console.log('Your task postprocess has been started.');
                    break;
                    case 'task_postprocess_end':
                      console.log('Your task postprocess has been completed.');
                      console.log('Outputs: ', msgJSON.message);
                      //output files will add ui
                      msgJSON.message.forEach(function(currentValue, index, arr){
                          console.log(currentValue);
                          var filesHtml = document.getElementById('files');
                          filesHtml.innerHTML = filesHtml.innerHTML + '<img src="' + currentValue.url + '" style="height:300px;">'
                      });
                    break;
                }
              }
          } catch (e) {
            console.log('e: ', e);
            console.log('msg: ', msg);
          }
        };

        ws.onclose = function() { 
          alert("Connection is closed..."); 
        };
    } else {              
        alert("WebSocket NOT supported by your Browser!");
    }
  }
</script>
      
                        

Prepare UI Elements Inside Body Tag

                          
  <div id="files"></div>
  <pre id="debug"></pre>
      
                        

Prompt to send to the model.

utter-project-EuroLLM-1.7B-Instruct-sample-1.txt
1737639338 Report This Model






Model updated on September 24







Model Card for EuroLLM-1.7B-Instruct


This is the model card for the first instruction tuned model of the EuroLLM series: EuroLLM-1.7B-Instruct. You can also check the pre-trained version: EuroLLM-1.7B.



  • Developed by: Unbabel, Instituto Superior Técnico, Instituto de Telecomunicações, University of Edinburgh, Aveni, University of Paris-Saclay, University of Amsterdam, Naver Labs, Sorbonne Université.

  • Funded by: European Union.

  • Model type: A 1.7B parameter instruction tuned multilingual transfomer LLM.

  • Language(s) (NLP): Bulgarian, Croatian, Czech, Danish, Dutch, English, Estonian, Finnish, French, German, Greek, Hungarian, Irish, Italian, Latvian, Lithuanian, Maltese, Polish, Portuguese, Romanian, Slovak, Slovenian, Spanish, Swedish, Arabic, Catalan, Chinese, Galician, Hindi, Japanese, Korean, Norwegian, Russian, Turkish, and Ukrainian.

  • License: Apache License 2.0.







Model Details


The EuroLLM project has the goal of creating a suite of LLMs capable of understanding and generating text in all European Union languages as well as some additional relevant languages.
EuroLLM-1.7B is a 1.7B parameter model trained on 4 trillion tokens divided across the considered languages and several data sources: Web data, parallel data (en-xx and xx-en), and high-quality datasets.
EuroLLM-1.7B-Instruct was further instruction tuned on EuroBlocks, an instruction tuning dataset with focus on general instruction-following and machine translation.







Model Description


EuroLLM uses a standard, dense Transformer architecture:



  • We use grouped query attention (GQA) with 8 key-value heads, since it has been shown to increase speed at inference time while maintaining downstream performance.

  • We perform pre-layer normalization, since it improves the training stability, and use the RMSNorm, which is faster.

  • We use the SwiGLU activation function, since it has been shown to lead to good results on downstream tasks.

  • We use rotary positional embeddings (RoPE) in every layer, since these have been shown to lead to good performances while allowing the extension of the context length.


For pre-training, we use 256 Nvidia H100 GPUs of the Marenostrum 5 supercomputer, training the model with a constant batch size of 3,072 sequences, which corresponds to approximately 12 million tokens, using the Adam optimizer, and BF16 precision.
Here is a summary of the model hyper-parameters:


































































Sequence Length4,096
Number of Layers24
Embedding Size2,048
FFN Hidden Size5,632
Number of Heads16
Number of KV Heads (GQA)8
Activation FunctionSwiGLU
Position EncodingsRoPE (\Theta=10,000)
Layer NormRMSNorm
Tied EmbeddingsNo
Embedding Parameters0.262B
LM Head Parameters0.262B
Non-embedding Parameters1.133B
Total Parameters1.657B







Run the model


from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "utter-project/EuroLLM-1.7B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)

text = '<|im_start|>system\n<|im_end|>\n<|im_start|>user\nTranslate the following English source text to Portuguese:\nEnglish: I am a language model for european languages. \nPortuguese: <|im_end|>\n<|im_start|>assistant\n'

inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))






Results







Machine Translation


We evaluate EuroLLM-1.7B-Instruct on several machine translation benchmarks: FLORES-200, WMT-23, and WMT-24 comparing it with Gemma-2B and Gemma-7B (also instruction tuned on EuroBlocks).
The results show that EuroLLM-1.7B is substantially better than Gemma-2B in Machine Translation and competitive with Gemma-7B.







Flores-200














































































































































































































































































































ModelAVGAVG en-xxAVG xx-enen-aren-bgen-caen-csen-daen-deen-elen-es-latamen-eten-fien-fren-gaen-glen-hien-hren-huen-iten-jaen-koen-lten-lven-mten-nlen-noen-plen-pt-bren-roen-ruen-sken-slen-sven-tren-uken-zh-cnar-enbg-enca-encs-enda-ende-enel-enes-latam-enet-enfi-enfr-enga-engl-enhi-enhr-enhu-enit-enja-enko-enlt-enlv-enmt-ennl-enno-enpl-enpt-br-enro-enru-ensk-ensl-ensv-entr-enuk-enzh-cn-en
EuroLLM-1.7B-Instruct86.8986.5387.2585.1789.4284.7289.1389.4786.9087.6086.2988.9589.4087.6974.8986.4176.9284.7986.7888.1789.7687.7087.2787.6267.8487.1090.0088.1889.2989.4988.3288.1886.8590.0087.3187.8986.6086.3487.4587.5787.9589.7288.8087.0086.7788.3489.0988.9582.6987.8088.3786.7187.2087.8186.7986.7985.6286.4881.1086.9790.2585.7589.2088.8886.0087.3886.7689.6187.94
Gemma-2B-EuroBlocks81.5978.9784.2176.6882.7383.1481.6384.6383.1579.4284.0572.5879.7384.9740.5082.1367.7980.5378.3684.9087.4382.9872.2968.6858.5583.1386.1582.7886.7983.1484.6178.1875.3780.8978.3884.3884.3583.8885.7786.8586.3188.2488.1284.7984.9082.5186.3288.2954.7886.5385.8385.4185.1886.7785.7884.9981.6581.7867.2785.9289.0784.1488.0787.1785.2385.0983.9587.5784.77
Gemma-7B-EuroBlocks85.2783.9086.6486.3887.8785.7484.2585.6981.4985.5286.9362.8384.9675.3484.9383.9186.9288.1986.1181.7380.5566.8585.3189.3685.8788.6288.0686.6784.7982.7186.4585.1986.6785.7786.3687.2188.0987.1789.4088.2686.7486.7387.2588.8788.8172.4587.6287.8687.0887.0187.5886.9286.7085.1085.7477.8186.8390.4085.4189.0488.7786.1386.6786.3289.2787.92







WMT-23










































































ModelAVGAVG en-xxAVG xx-enAVG xx-xxen-deen-csen-uken-ruen-zh-cnde-enuk-enru-enzh-cn-encs-uk
EuroLLM-1.7B-Instruct82.9183.2081.7786.8281.5685.2381.3082.4783.6185.0384.0685.2581.3178.83
Gemma-2B-EuroBlocks79.9679.0180.8681.1576.8276.0577.9278.9881.5882.7382.7183.9980.3578.27
Gemma-7B-EuroBlocks82.7682.2682.7085.9881.3782.4281.5482.1882.9083.1784.2985.7082.4679.73







WMT-24






































































ModelAVGAVG en-xxAVG xx-xxen-deen-es-latamen-csen-ruen-uken-jaen-zh-cnen-hics-ukja-zh-cn
EuroLLM-1.7B-Instruct79.3279.3279.3479.4280.6780.5578.6580.1282.9680.6071.5983.4875.20
Gemma-2B-EuroBlocks74.7274.4175.9774.9378.8170.5474.9075.8479.4878.0662.7079.8772.07
Gemma-7B-EuroBlocks78.6778.3480.0078.8880.4778.5578.5580.1280.5578.9070.7184.3375.66







General Benchmarks


We also compare EuroLLM-1.7B with TinyLlama-v1.1 and Gemma-2B on 3 general benchmarks: Arc Challenge and Hellaswag.
For the non-english languages we use the Okapi datasets.
Results show that EuroLLM-1.7B is superior to TinyLlama-v1.1 and similar to Gemma-2B on Hellaswag but worse on Arc Challenge. This can be due to the lower number of parameters of EuroLLM-1.7B (1.133B non-embedding parameters against 1.981B).







Arc Challenge


























































































ModelAverageEnglishGermanSpanishFrenchItalianPortugueseChineseRussianDutchArabicSwedishHindiHungarianRomanianUkrainianDanishCatalan
EuroLLM-1.7B0.34960.40610.34640.36840.36270.37380.38550.35210.32080.35070.30450.36050.29280.32710.34880.35160.35130.3396
TinyLlama-v1.10.26500.37120.25240.27950.28830.26520.29060.24100.26690.24040.23100.26870.23540.24490.24760.25240.24940.2796
Gemma-2B0.36170.48460.37550.39400.40800.36870.38720.37260.34560.33280.31220.35190.28510.30390.35900.36010.35650.3516







Hellaswag






















































































ModelAverageEnglishGermanSpanishFrenchItalianPortugueseRussianDutchArabicSwedishHindiHungarianRomanianUkrainianDanishCatalan
EuroLLM-1.7B0.47440.47600.60570.47930.53370.52980.50850.52240.46540.49490.41040.48000.36550.40970.46060.4360.4702
TinyLlama-v1.10.36740.62480.36500.41370.40100.37800.38920.34940.35880.28800.35610.28410.30730.32670.33490.34080.3613
Gemma-2B0.46660.71650.47560.54140.51800.48410.50810.46640.46550.38680.43830.34130.37100.43160.42910.44710.4448







Bias, Risks, and Limitations


EuroLLM-1.7B-Instruct has not been aligned to human preferences, so the model may generate problematic outputs (e.g., hallucinations, harmful content, or false statements).







Paper


Paper: EuroLLM: Multilingual Language Models for Europe


Models

View All

We couldn't find any matching results.

Select Language

Logo of nvidia programLogo of nvidia program
Wiro AI brings machine learning easily accessible to all in the cloud.
  • WIRO
  • About
  • Blog
  • Careers
  • Contact
  • Language Language
  • Product
  • Models
  • Pricing
  • Roadmap
  • Changelog
  • Status
  • Documentation
  • Introduction
  • Start Your First Project
  • Example Projects

2023 © Wiro.ai | Terms of Service & Privacy Policy