Guest



Sign inSignup
  • Home
  • Dashboard
  • Tools
  • Store
  • Pricing

Welcome

HomeDashboardToolsStore
Use cases
Human Resources
Retail & E-commerce
Interior Design
Fashion AI
Creative Content Solutions
Sports & Fitness
GenAI Video Tools
PricingDocumentation
Guest



Sign inSignup

Task History

  • Runnings
  • Models
  • Trains

You don't have task yet.

Go to Tools

Welcome

  • Tools
  • Qwen/Qwen2-7B-Instruct
Tools
Task History

Qwen/ Qwen2-7B-Instruct

2281runs
0Comments

API Sample: Qwen/Qwen2-7B-Instruct

You don't have any projects yet. To be able to use our api service effectively, please sign in/up and create a project.

Get your api key
  • curl
  • nodejs
  • csharp
  • php
  • swift
  • dart
  • kotlin
  • go
  • python

Prepare Authentication Signature

                          
  //Sign up Wiro dashboard and create project
  export YOUR_API_KEY="{{useSelectedProjectAPIKey}}"; 
  export YOUR_API_SECRET="XXXXXXXXX"; 

   //unix time or any random integer value
  export NONCE=$(date +%s);

  //hmac-SHA256 (YOUR_API_SECRET+Nonce) with YOUR_API_KEY
  export SIGNATURE="$(echo -n "${YOUR_API_SECRET}${NONCE}" | openssl dgst -sha256 -hmac "${YOUR_API_KEY}")";
      
                        

Create a New Folder - Make HTTP Post Request

Create a New Folder - Response

Upload a File to the Folder - Make HTTP Post Request

Upload a File to the Folder - Response

Run Command - Make HTTP Post Request

                          
  curl -X POST "{{apiUrl}}/Run/{{toolSlugOwner}}/{{toolSlugProject}}"  \
  -H "Content-Type: {{contentType}}" \
  -H "x-api-key: ${YOUR_API_KEY}" \
  -H "x-nonce: ${NONCE}" \
  -H "x-signature: ${SIGNATURE}" \
  -d '{{toolParameters}}';

      
                        

Run Command - Response

                          
  //response body
  {
      "errors": [],
      "taskid": "2221",
      "socketaccesstoken": "eDcCm5yyUfIvMFspTwww49OUfgXkQt",
      "result": true
  }
      
                        

Get Task Detail - Make HTTP Post Request

                          
  curl -X POST "{{apiUrl}}/Task/Detail"  \
  -H "Content-Type: {{contentType}}" \
  -H "x-api-key: ${YOUR_API_KEY}" \
  -H "x-nonce: ${NONCE}" \
  -H "x-signature: ${SIGNATURE}" \
  -d '{
    "tasktoken": 'eDcCm5yyUfIvMFspTwww49OUfgXkQt',
  }';

      
                        

Get Task Detail - Response

                          
  //response body
  {
    "total": "1",
    "errors": [],
    "tasklist": [
        {
            "id": "2221",
            "uuid": "15bce51f-442f-4f44-a71d-13c6374a62bd",
            "name": "",
            "socketaccesstoken": "eDcCm5yyUfIvMFspTwww49OUfgXkQt",
            "parameters": {
                "inputImage": "https://api.wiro.ai/v1/File/mCmUXgZLG1FNjjjwmbtPFr2LVJA112/inputImage-6060136.png"
            },
            "debugoutput": "",
            "debugerror": "",
            "starttime": "1734513809",
            "endtime": "1734513813",
            "elapsedseconds": "6.0000",
            "status": "task_postprocess_end",
            "cps": "0.000585000000",
            "totalcost": "0.003510000000",
            "guestid": null,
            "projectid": "699",
            "modelid": "598",
            "description": "",
            "basemodelid": "0",
            "runtype": "model",
            "modelfolderid": "",
            "modelfileid": "",
            "callbackurl": "",
            "marketplaceid": null,
            "createtime": "1734513807",
            "canceltime": "0",
            "assigntime": "1734513807",
            "accepttime": "1734513807",
            "preprocessstarttime": "1734513807",
            "preprocessendtime": "1734513807",
            "postprocessstarttime": "1734513813",
            "postprocessendtime": "1734513814",
            "pexit": "0",
            "categories": "["tool","image-to-image","quick-showcase","compare-landscape"]",
            "outputs": [
                {
                    "id": "6bc392c93856dfce3a7d1b4261e15af3",
                    "name": "0.png",
                    "contenttype": "image/png",
                    "parentid": "6c1833f39da71e6175bf292b18779baf",
                    "uuid": "15bce51f-442f-4f44-a71d-13c6374a62bd",
                    "size": "202472",
                    "addedtime": "1734513812",
                    "modifiedtime": "1734513812",
                    "accesskey": "dFKlMApaSgMeHKsJyaDeKrefcHahUK",
                    "foldercount": "0",
                    "filecount": "0",
                    "ispublic": 0,
                    "expiretime": null,
                    "url": "https://cdn1.wiro.ai/6a6af820-c5050aee-40bd7b83-a2e186c6-7f61f7da-3894e49c-fc0eeb66-9b500fe2/0.png"
                }
            ],
            "size": "202472"
        }
    ],
    "result": true
  }
      
                        

Get Task Process Information and Results with Socket Connection

                          
<script type="text/javascript">
  window.addEventListener('load',function() {
    //Get socketAccessToken from task run response
    var SocketAccessToken = 'eDcCm5yyUfIvMFspTwww49OUfgXkQt';
    WebSocketConnect(SocketAccessToken);
  });

  //Connect socket with connection id and register task socket token
  async function WebSocketConnect(accessTokenFromAPI) {
    if ("WebSocket" in window) {
        var ws = new WebSocket("wss://socket.wiro.ai/v1");
        ws.onopen = function() {  
          //Register task socket token which has been obtained from task run API response
          ws.send('{"type": "task_info", "tasktoken": "' + accessTokenFromAPI + '"}'); 
        };

        ws.onmessage = function (evt) { 
          var msg = evt.data;

          try {
              var debugHtml = document.getElementById('debug');
              debugHtml.innerHTML = debugHtml.innerHTML + "\n" + msg;

              var msgJSON = JSON.parse(msg);
              console.log('msgJSON: ', msgJSON);

              if(msgJSON.type != undefined)
              {
                console.log('msgJSON.target: ',msgJSON.target);
                switch(msgJSON.type) {
                    case 'task_queue':
                      console.log('Your task has been waiting in the queue.');
                    break;
                    case 'task_accept':
                      console.log('Your task has been accepted by the worker.');
                    break;
                    case 'task_preprocess_start':
                      console.log('Your task preprocess has been started.');
                    break;
                    case 'task_preprocess_end':
                      console.log('Your task preprocess has been ended.');
                    break;
                    case 'task_assign':
                      console.log('Your task has been assigned GPU and waiting in the queue.');
                    break;
                    case 'task_start':
                      console.log('Your task has been started.');
                    break;
                    case 'task_output':
                      console.log('Your task has been started and printing output log.');
                      console.log('Log: ', msgJSON.message);
                    break;
                    case 'task_error':
                      console.log('Your task has been started and printing error log.');
                      console.log('Log: ', msgJSON.message);
                    break;
                   case 'task_output_full':
                      console.log('Your task has been completed and printing full output log.');
                    break;
                    case 'task_error_full':
                      console.log('Your task has been completed and printing full error log.');
                    break;
                    case 'task_end':
                      console.log('Your task has been completed.');
                    break;
                    case 'task_postprocess_start':
                      console.log('Your task postprocess has been started.');
                    break;
                    case 'task_postprocess_end':
                      console.log('Your task postprocess has been completed.');
                      console.log('Outputs: ', msgJSON.message);
                      //output files will add ui
                      msgJSON.message.forEach(function(currentValue, index, arr){
                          console.log(currentValue);
                          var filesHtml = document.getElementById('files');
                          filesHtml.innerHTML = filesHtml.innerHTML + '<img src="' + currentValue.url + '" style="height:300px;">'
                      });
                    break;
                }
              }
          } catch (e) {
            console.log('e: ', e);
            console.log('msg: ', msg);
          }
        };

        ws.onclose = function() { 
          alert("Connection is closed..."); 
        };
    } else {              
        alert("WebSocket NOT supported by your Browser!");
    }
  }
</script>
      
                        

Prepare UI Elements Inside Body Tag

                          
  <div id="files"></div>
  <pre id="debug"></pre>
      
                        

Prompt to send to the model.

Your request will cost $0.0006 per second.

(Total cost varies depending on the request’s execution time.)
Qwen-Qwen2-7B-Instruct-sample-1.txt
1736807506 Report This Model






Qwen2-7B-Instruct







Introduction


Qwen2 is the new series of Qwen large language models. For Qwen2, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters, including a Mixture-of-Experts model. This repo contains the instruction-tuned 7B Qwen2 model.


Compared with the state-of-the-art opensource language models, including the previous released Qwen1.5, Qwen2 has generally surpassed most opensource models and demonstrated competitiveness against proprietary models across a series of benchmarks targeting for language understanding, language generation, multilingual capability, coding, mathematics, reasoning, etc.


Qwen2-7B-Instruct supports a context length of up to 131,072 tokens, enabling the processing of extensive inputs. Please refer to this section for detailed instructions on how to deploy Qwen2 for handling long texts.


For more details, please refer to our blog, GitHub, and Documentation.







Model Details


Qwen2 is a language model series including decoder language models of different model sizes. For each size, we release the base language model and the aligned chat model. It is based on the Transformer architecture with SwiGLU activation, attention QKV bias, group query attention, etc. Additionally, we have an improved tokenizer adaptive to multiple natural languages and codes.







Training details


We pretrained the models with a large amount of data, and we post-trained the models with both supervised finetuning and direct preference optimization.







Requirements


The code of Qwen2 has been in the latest Hugging face transformers and we advise you to install transformers>=4.37.0, or you might encounter the following error:


KeyError: 'qwen2'






Quickstart


Here provides a code snippet with apply_chat_template to show you how to load the tokenizer and model and how to generate contents.


from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen2-7B-Instruct",
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-7B-Instruct")

prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)

generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]






Processing Long Texts


To handle extensive inputs exceeding 32,768 tokens, we utilize YARN, a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.


For deployment, we recommend using vLLM. You can enable the long-context capabilities by following these steps:



  1. Install vLLM: You can install vLLM by running the following command.


pip install "vllm>=0.4.3"

Or you can install vLLM from source.



  1. Configure Model Settings: After downloading the model weights, modify the config.json file by including the below snippet:


        {
    "architectures": [
    "Qwen2ForCausalLM"
    ],
    // ...
    "vocab_size": 152064,

    // adding the following snippets
    "rope_scaling": {
    "factor": 4.0,
    "original_max_position_embeddings": 32768,
    "type": "yarn"
    }
    }

    This snippet enable YARN to support longer contexts.



  2. Model Deployment: Utilize vLLM to deploy your model. For instance, you can set up an openAI-like server using the command:


    python -m vllm.entrypoints.openai.api_server --served-model-name Qwen2-7B-Instruct --model path/to/weights

    Then you can access the Chat API by:


    curl http://localhost:8000/v1/chat/completions \
    -H "Content-Type: application/json" \
    -d '{
    "model": "Qwen2-7B-Instruct",
    "messages": [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "Your Long Input Here."}
    ]
    }'

    For further usage instructions of vLLM, please refer to our Github.




Note: Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, potentially impacting performance on shorter texts. We advise adding the rope_scaling configuration only when processing long contexts is required.







Evaluation


We briefly compare Qwen2-7B-Instruct with similar-sized instruction-tuned LLMs, including Qwen1.5-7B-Chat. The results are shown below:






























































































































































DatasetsLlama-3-8B-InstructYi-1.5-9B-ChatGLM-4-9B-ChatQwen1.5-7B-ChatQwen2-7B-Instruct
English
MMLU68.469.572.459.570.5
MMLU-Pro41.0--29.144.1
GPQA34.2--27.825.3
TheroemQA23.0--14.125.3
MT-Bench8.058.208.357.608.41
Coding
Humaneval62.266.571.846.379.9
MBPP67.9--48.967.2
MultiPL-E48.5--27.259.1
Evalplus60.9--44.870.3
LiveCodeBench17.3--6.026.6
Mathematics
GSM8K79.684.879.660.382.3
MATH30.047.750.623.249.6
Chinese
C-Eval45.9-75.667.377.2
AlignBench6.206.907.016.207.21







Citation


If you find our work helpful, feel free to give us a cite.


@article{qwen2,
title={Qwen2 Technical Report},
year={2024}
}

Tools

View All

We couldn't find any matching results.

Qwen/Qwen2.5-0.5B-Instruct

Qwen/Qwen2.5-0.5B-Instruct is a compact 500 million parameter AI language model optimized for generating human-like responses and assisting with various natural language understanding tasks.
Run time: 1 second
2405 runs
0

Qwen/Qwen2.5-Math-7B-Instruct

Qwen2.5-Math-7B-Instruct is a large language model with 7 billion parameters, specialized in advanced mathematical problem-solving and reasoning. It is fine-tuned for instruction-based tasks and excels in fields like algebra, calculus, and quantitative analysis, making it suitable for research, education, and technical applications.
Run time: 1 second
2285 runs
0

Qwen/Qwen2.5-14B-Instruct

Qwen2.5-14B-Instruct is a large language model by Alibaba’s Qwen team, optimized for instruction-following tasks with 14 billion parameters. It offers strong reasoning, multilingual capabilities, and efficient performance, making it suitable for chatbots, content creation, and various AI-driven applications.
Run time: 1 second
1193 runs
0

Qwen/Qwen2.5-32B-Instruct

Qwen2.5-32B-Instruct is a powerful large language model developed by Alibaba’s Qwen team, designed for instruction-following tasks with enhanced reasoning and natural language understanding capabilities. Optimized for efficiency and accuracy, it supports multi-turn conversations and complex queries, making it suitable for applications such as chatbots, content generation, and AI assistants.
Run time: 1 second
1571 runs
0

Qwen/Qwen2-7B-Instruct

Qwen2-7B-Instruct is a versatile large language model with 7 billion parameters, optimized for instruction-following tasks. It delivers high performance in natural language understanding, content generation, and complex reasoning, making it ideal for a wide range of AI-driven applications, from chatbots to educational tools.
Run time: 1 second
2103 runs
0

Qwen/Qwen2.5-1.5B-Instruct

Qwen/Qwen2.5-1.5B-Instruct is a 1.5 billion parameter AI language model designed to generate human-like responses based on user inputs.
Run time: 1 second
2234 runs
0

Select Language

Logo of nvidia programLogo of nvidia program
Wiro AI brings machine learning easily accessible to all in the cloud.
  • WIRO
  • About
  • Careers
  • Contact
  • Language Language
  • Product
  • Tools
  • Pricing
  • Roadmap
  • Changelog
  • Status
  • Documentation
  • Introduction
  • Start Your First Project
  • Example Projects

2023 © Wiro.ai | Terms of Service & Privacy Policy